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SUMMARY 

This paper discusses two types of methods for assessing two-dimensional wall 
interference in the adaptive-wall test section of the NASA Ames 2- by 2-Foot 
Transonic Wind Tunnel: 
walls of the test section ("adaptive-walltl methods) and (2) methods for estimating 
wall-induced velocities near the model ("correction" methods). 
are based on measurements of either one or two components of flow velocity near the 
walls of the test section. Each method is demonstrated using simulated wind tunnel 
data and is compared with other methods of the same type. The two-component adap- 
tive-wall and correction methods were found to be preferable to the corresponding 
one-component methods because ( 1 )  they are more sensitive to, and give a more com- 
plete description of, wall interference; (2) they require measurements at fewer 
locations; (3)  they can be used to establish free-stream conditions; and (4 )  they 
are independent of a description of the model and constants of integration. 

( 1 )  methods for predicting free-air conditions near the 

All of these methods 

INTRODUCTION 

Since the early 19709, wind tunnel engineers have recognized that flow measure- 
ments at or near the walls of a test section can be used to estimate wall interfer- 
ence. Such measurements were first used in adaptive-wall test sections to determine 
wall settings for zero interference. Subsequently the same measurements have been 
used in conventional as well as adaptive test sections to correct aerodynamic data 
for wall interference. 

A variety of measured-flow boundary-condition methods is now available for 
assessing wall interference in wind tunnels. 
flow measurements required, locations where the measurements must be made, and 
simplifying assumptions upon which each method is based. 

These methods differ in the types of 

In this paper, several measured-flow boundary-condition methods are described 
and compared to determine which are best suited for use in the new adaptive-wall 
test section being built for the NASA Ames 2- by 2-Foot Transonic Wind Tunnel. As 
this test section is designed for testing two-dimensional airfoils, only two- 
dimensional iiiethods will be discussed. The paper =ill begin Giitli a brief descrip- 
tion of the 2- by 2-ft adaptive-wall test section. 
( 1 )  methods for computing free-air conditions near the walls of adaptive-wall wind 
tunnels ("adaptive-wa1lqt methods) and (2) methods for estimating wall-induced flow 
near the model (llcorrectionll methods). 

Following will be discussions of 

A subsequent section will describe how these 
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methods were implemented for the present study. 
correction methods will be demonstrated using simulated wind tunnel data. 
tions of the methods are not included, but are available in the references cited. 

Finally, the adaptive-wall and 
Deriva- 
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SYMBOLS 

model cross-sectional area/c 

model chord 

constant of integration 

lift coefficient 

tunnel height 

Mach number 

normal component 

streamwise perturbation velocity 

free-stream velocity 

vertical velocity 

distance downstream from model leading edge 

distance above model 

angle of attack, deg 

2 
)/1 - M m 

ratio of specific heats ( =  1.4 in air) 

perturbation velocity potential 

cubsci-ip'cs 

d 

f free-air 

ff far-f ield 

most downstream point where velocity is measured 
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i waii-induced 

S caused by elementary singularities 

U most upstream point where velocity is measured 

1 inner contour 

2 outer contour 

0) free-stream 

Superscripts 

a(x,y) + a(x,-y) 
2 - symmetric component, ii(x,y) = 

TWO- BY TWO-FOOT ADAPTIVE-WALL TEST SECTION 

The 2- by 2-ft adaptive-wall test section (fig. 1)  is designed to test two- 
dimensional airfoils at Mach numbers up to 1.0. The upper and lower walls will be 
slotted and the side walls will be solid. 
regulating the airflow through the upper and lower walls. 

Wall interference will be minimized by 

Spanwise partitions will divide separate plenums above and below the test 
section into 32 compartments each. The pressure in each compartment, and thus the 
local airflow through the wall, w i l l  be controlled by the position of a valve con- 
necting each compartment to two reservoirs of air, one at a higher pressure and the 
other at a lower pressure tnan t 'nat of tine test section. 

Each sidewall will contain a Schlieren-quality glass window extending nearly 
The model will be supported at the entire height and length of the test section. 

its aerodynamic center by self-aligning bearings mounted in the glass. The view 
through the windows will be unobstructed except for these bearings, a narrow support 
arm which will resist the model pitching moment, and a 3-in.-wide window frame. 

A fast-scanning laser velocimeter, mounted between upstream and downstream 
bulkheads, will be capable of measuring two components of flow velocity at nearly 
any point in the plane midway between the sidewalls. 
measuremnt capability, th is  t.est. section will be well suited to wall-interference 
assessment methods based on measured-flow boundary conditions. 

With this unique flow- 
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ADAPTIVE-WALL METHODS 

In an adaptive-wall wind tunnel, the infinite flow past a model in free air is 
simulated by dividing the flow into two regions: 
flow past the model within the test section and an outer region represented mathe- 
matically which extends outward from the inner region to infinity. 
separated by a contour (or control surface) surrounding the model. 
test section are adjusted so that the inner and outer flow conditions along the 
contour are compatible. 

an inner region represented by 

The regions are 
The walls of the 

Linear Iterative Methods 

Ferri and Baronti (ref. 1 )  and Sears (ref. 2) independently developed the first 
and most widely used method for establishing free-air conditions along the contour. 
In two dimensions, this method requires measurements of streamwise and vertical flow 
velocities along the contour. The measured distribution of either component can be 
used to compute the corresponding free-air, outer-flow solution of the other compo- 
nent. The inner (measured) and outer (computed) distributions of the second compo- 
nent are compared, and the walls are adjusted to reduce differences between them. 
The process is iterated until satisfactory convergence is achieved. 

This two-component adaptive-wall method is most easily applied in test sections 
with solid but flexible walls. 
contour bounding an infinite strip, streamwise and normal velocity components along 
the contour are easily deduced (neglecting the displacement effect of the wall 
boundary layers) from the shapes of the walls and the static pressure distributions 
along them. 

Because the upper and lower walls approximate a 

In ventilated test sections, the walls do not form a suitable contour because 
the flow adjacent to them is generally complex and three-dimensional. 
contour must lie in the inviscid flow between the model and the walls, a region much 
less accessible to flow measurement instruments. 

Instead, the 

Davis developed an alternative adaptive-wall method that helps simplify this 
instrumentation problem (ref. 3 ) .  
velocity (either streamwise or vertical) along two contours surrounding the model. 
The inner and outer flow regions overlap between the contours. 
the inner contour are used to compute the corresponding, free-air distribution of 
the same component along the outer contour. The walls are adjusted to reduce dif- 
ferences between the inner flow (measured) and outer flow (computed) velocity dis- 
tributions along the outer contour. As with the two-component method, this method 
must be iterated. 

It requires measurements of only one component of 

Flow measurements on 

If the flow in the outer region is subsonic, it can be described by the linear 
Prandtl-Glauert equation. The free-air relationships for the one- and two-component 
adaptive-wall methods can then be derived analytically and expressed in closed 
form. For contours extending upstream and downstream to infinity (i.e., bounding an 
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one-component (ref. 3) 

two-component (ref. 2) 

To apply these relationships in a real test section, several approximations 
must be made. 
substituted for the free-air velocities in the integrands of equations ( 1 )  and (2). 
Thus we will refer to these as "iterative" methods. (2) Because u is a perturba- 
tion quantity, it is estimated by subtracting the assumed free-stream velocity from 
the measured data. ( 3 )  Either the infinite integrals must be truncated or the 
velocity distributions must be extrapolated beyond the ends of the test section. 

(1) In iterative adaptive-wall algorithms, measured velocities are 

Truncation or extrapolation errors can be avoided if the measurement contour is 
closed within the test section upstream and downstream of the model (fig. 2(c)). 
For linear flow in the outer region, the free-air relationships between streamwise 
and vertical perturbation velocities on a closed contour are (refs. 4,5): 
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Note that the solutions above and below the model are coupled. 
uncouple and reduce to the two-component/infinite-strip relationships (eq. (2)) if 
the upstream and downstream boundaries are at infinity. 

These solutions 

A closed-contour solution for the one-component method has not been developed. 
However, it would be of limited value because truncation errors with the one- 
component method are usually small, as we shall demonstrate later. 

Linear One-Step Methods 

If the inner flow and the outer flow obey linear equations and the model is 
small, then free-air velocities at the measurement contour can be accurately esti- 
mated from measured velocities in one step, thus eliminating the need for iterative 
wall adjustments. Such one-step methods are exact if the model is infinitely small 
or if the wall-induced flow is constant within the contour (i.e., if the assumptions 
of classical wall-interference theory apply). 

Lo and Sickles (ref. 6) derived the following one-step solution to the two- 
component, infinite-strip problem: 

Unlike the iterative solutions, the one-step solutions above and below the model are 
coupled. Note that all velocities on the right sides of the equations are measured 
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and tnat the sum of "ne first two terms is the average of tine measured veiocities 
and the iterative solutions. 

On a closed contour, the one-step solution to the two-component problem is the 
average of the measured velocities and the iterative solutions (eqs. (3a) and (3b)) 
(refs. 4 and 5). 

Free-air upwashes can be computed in one step from measurements of upwash along 

According to this method, wall-induced upwashes along the inner contour can 
Subtracting these wall- 

two contours by extending the one-component correction method described in refer- 
ence 7. 
be computed from the upwashes measured along both contours. 
induced upwashes from the measured upwashes yields the free-air upwashes along the 
inner contour. The free-air upwashes along the outer contour can then be obtained 
from equation (lb). This method can also be applied to measurements of streamwise 
velocities on two infinite contoiirs. 

Nonlinear Solutions 

Nonlinear effects become significant in the outer flow if the local Mach number 
exceeds about 0.9. 
algorithm was developed for approximating the solution to the transonic small per- 
turbation (TSP) equation in the outer region. 
approximated by a rectangular space bounded by the measurement level (for the one- 
component method the space was bounded by the inner level) and three far-field 
boundaries (fig. 3). The measured upwash distribution was applied as the boundary 
condition along the measurement level, and linear theory was used to estimate free- 
air conditions on the far-field boundaries. 
was solved with finite differences as discussed in the "Methods of Solution" 
section. 

As no analytic solutions exist to the nonlinear problem, an 

The outer region above the model was 

The resulting boundary value problem 

CORRECTION METHODS 

Since the development of adaptive-wall wind tunnels, engineers have learned to 
use measured flow boundary conditions to estimate wall-induced velocities near the 
model. 
preted as "corrections" to free-stream conditions (ref. 8). The advantage of this 
approach compared to classical methods is that it eliminates the need to include 
information about the wall itself in the assessment scheme. The disadvantage is 
that it requires many flow measurements at or near the wind tunnel walls. However, 
in an adaptive-wall wind tunnel, this disadvantage is inconsequential because these 
measurements are also needed to adjust the test section walls. 
are valuable for adaptive-wail test sections because they provide a quantitative 
measurement of residual wali interference (ref. 9). The correction methods to be 

As with classical correction methods, these velocities can then be inter- 

Correction methods 
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discussed here are based on the assumptions of classical wall-interference theory-- 
the same assumptions discussed earlier in connection with the one-step adaptive-wall 
methods. 

Capelier, Chevallier, and Bouniol (ref. 10) developed the first correction 
method to exploit measured flow boundary conditions. 
simple because it requires measurements of only one component of velocity along one 
contour surrounding the model. 
Formula (ref. 11)  which allows the wall-induced complex velocity field within the 
contour to be defined, up to a complex constant of integration, by the distribution 
of either its real or imaginary component along the contour. 
velocities along the contour are estimated by subtracting free-air velocities caused 
by the model from the measured velocities. 
are estimated from elementary singularities with strengths set to match the measured 
forces and moments on the model. 

This method is particularly 

The method is derived from the Schwarz Integral 

The wall-induced 

The free-air model-induced velocities 

If the contour bounds an infinite strip defined by 
Schwarz formula defines the wall-induced velocities along the tunnel centerline from 
the symmetric and antisymmetric components of either the wall-induced upwash or 
streamwise velocity along the contour: 

-y 5 q 5 y, then the 

The constants of integration are zero if wall-induced flow perturbations vanish far 
upstream of the model. 

Other one-compnn~nt/one-~onte~~ methods have been devehped ( ref .  5) but w i l l  

having to estimate both the model-induced velocities 
These methods do not fully exploit the information 

not be considered here. 
its principal disadvantages: 
and a constant of integration. 
available from adaptive-wall boundary measurements. 

They are similar to the method described earlier and share 

If a single component of velocity is measured along a second contour, as 
required by the one-component adaptive-wall method, then the wall-induced velocities 
along the inner contour can be computed directly from the measured velocities 
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without any information about the model (ref. 71. The waii-induced veioclties near 
the model are then easily obtained from the Schwarz formulae (eqs. (5a)-(5d)). This 
method is directly related to the linear-iterative adaptive-wall method in that it 
involves a functional of the error function (the differences between measured veloc- 
ities and the adaptive-wall solution) along the outer contour. Although it elimi- 
nates the need to simulate the model, the method retains the uncertainty of the 
constants of integration in equations (5b) and (52). 

Ashill and Weeks (ref. 12) have shown how wall-induced velocities near the 
model can be computed from measurements of two components of velocity along a single 
contour surrounding the model. 
Formula (ref. 13) and is particularly elegant because there are no constants of 
integration to evaluate and it requires no information about the model. If the 
contour bounds the infinite strip -y < n < y, then the wall-induced velocities 
along the tunnel centerline are given iy (ref. 5): 

This method can be derived from the Cauchy Integral 

If two-component measurements are made along a closed contour, the wall-induced 
velocities are given by: 

METHODS OF SOLUTION 

As part of the present study, computer programs were wrAWwen to implement each 
of the adaptive-wall and correction methods described above. 
measured-flow boundary-conditions data in the form in which the data will be gener- 
ated in the 2- x 2-ft tunnel adaptive-wall test section. 
acquired by the laser velocimeter at a set of discrete points along each contour 
(figs. 4 and 5 ) .  

Each program processes 

These data will be 
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Numerical Integration 

All of the integrals were solved by numerical integration. The closed-contour 
integrals (eqs. ( 3 )  and (7)) were evaluated using Everhart's algorithm (ref. 4), 
which assumes linear variation of velocities between adjacent control points. 
assumption of linearly varying velocities was also used to evaluate equations 1, 2, 
4, and 6 because, in these cases, its use resulted in integrals that could be evalu- 
ated in closed form on each interval. The integrals in eqs. (5a)-(5d) were solved 
using the trapezoidal rule, which assumes linear variation of the entire integrand 
between control points. 

The 

The two-component adaptive-wall integrals (eqs. (2) and ( 3 ) )  include singular 
The integrals were evaluated at these points by the limiting procedure points. 

described by Everhart (ref. 4). 

Extrapolation 

The measured velocities in the integrands of the infinite-strip integrals were 
extrapolated beyond the ends of the test section by one of several methods. The 
measured velocities in the adaptive-wall integrals were fitted with the velocity 
distribution caused by six singularities (source, vortex, two doublets, and two 
quadrupoles) at the model quarter chord (ref. 14). For example, equation (2a) was 
expressed as: 

where 

the most upstream point where velocity is measured i 
xd the most downstream point where velocity is measured 1 
ws the upwash distribution caused by the singularities which gives the best fit 

of W(E,Y) 

the corresponding streamwise perturbation velocity caused by the singularities 
I 
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free air satisfy the free-air relationships (eq. (2a)). Note that the final inte- 
gral is zero if the singularities provide a perfect fit of the measured data. 

In a similar manner, equations (2b), (la), and (lb) were expressed as: 

The velocities used by the one-component correction methods were extrapolated 
approximately three tunnel heights beyond the ends of the test section by assuming 
they decayed in inverse proportion to the absolute distance from the model. 

The velocities in the integrands of the two-component correction equations were 
not extrapolated. The resulting errors were expected to be small because the ker- 
nels in equations (6a) and (6b) rapidly become small for large values of 16 - x I .  

Nonlinear Adaptive-Wall Method 

The TSP equation, expressed in terms of the perturbation velocity potential, 
can be written (Lottati, I., Implicit, Nonswitching, Vector-Oriented Finite- 
Difference Algorithms for Steady Transonic Flow Calculation. 
manuscript) 

Unpublished 

where 

The solution to t is equation was approximated by the method of finite differences. 
The terms a @/ay and &$/ax were represented by second-order-accurat cen ral- 
difference operators throughout the computational domain. The term a $/ax was 
approximated by a central-ciifference operator at mesh points where M < 1.0 and by 
a second-order upwind-difference operator at points where M - > 1.0. No special 
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shock-point operator was used (i.e., the solutions were not fully conservative 
(ref. 15)). 

Neumann boundary conditions were applied to all four sides of the rectangular 

Boundary conditions along the upper boundary, 

was estimated from the measured 

domain (fig. 3 ) .  
upwash distribution measured there. 
y = yff, were estimated from the measured upwashes using equation (lb). 
the upstream and downstream boundaries, addan = u 
upwash distribution at y = y1 

The boundary condition along the measurement line, y = y,, was the 

Finally, at 

using equations (la) and (2a): 

The solutions to the difference equations were approximated iteratively, row by row, 
sweeping outward from the lower boundary. 

TEST CASES 

The adaptive-wall and correction methods were applied to simulated wind tunnel 
In the first and simplest method, data. 

a lifting airfoil with thickness in free air was represented by a vortex and doublet 
at x/c = 0.25 and y = 0. Solid-wall boundary conditions could be added by super- 
imposing a system of image singularities at x/c = 0.25 and y = +n(h/2) where 
n is an integer. This representation is convenient because it exactly satisfies 
the assumptions of classical wall-interference theory and the model- and wall- 
induced velocities are easily separated. 

These data were generated by two methods. 

Wind tunnel data were also simulated using the computer program TSFOIL 
(ref. 16). 
to free-air conditions or any of several other wall boundary conditions. 
gram was modified to output streamwise and vertical perturbation velocities at 
control points specified by the user (Byerly, J., private communication). The 
TSFOIL simulations provided a check of the adaptive-wall and correction methods in 
transonic flows in which nonlinear effects are present, 

This program solves the TSP equations for flow past an airfoil subject 
The pro- 

For both types of flow simulations, perturbation velocities were computed at 
the points where flow measurements will be made in the Two- by Two-Foot Wind Tunnel 
(figs. 4 and 5). 
respect to the plenum compartments to facilitate wall-adjustment calculations. 

The control points along each axial line were centered with 

The test cases were used to assess the accuracies of the methods and to study 
their sensitivities to ( 1 )  uncertainties in free-stream conditions and (2) errors in 
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extrapolating velocities beyond the ends of the test section. 
solutions computed by the adaptive-wall and correction methods are compared with 
simulated data along axial lines in the test section. Table 1 summarizes the flow 
conditions of each simulation along with the type of method applied and the relevant 
equation and reference numbers. 

In figures 6-15, 

Adaptive-Wall Methods 

Test case (1). 

Free-air data should exactly satisfy the iterative adaptive-wall relationships 
(eqs. (1) and (2)). 
in free air with outer-flow solutions computed using each of the linear iterative 
adaptive-wall relatioxships. In each case, the outer-flow solution is very 
accurate. 

A vortex and doublet in free air (Mm = 0.5, C, = 0.4, A = 0.4)- 

Figures 6(a) through 6(f) compare data for a vortex and doublet 

Note from figure 6 that significant velocity perturbations persist at the ends 
Thus, the infinite-strip methods can be expected to be sensi- of the test section. 

tive to extrapolation errors. 
6(d) include the outer solutions that were obtained by truncating the infinite 
integrals at the most upstream and downstream measurement locations. 

To point out this sensitivity, figures 6(a) through 

The contributions of the truncated velocity distributions to the one-component 
solutions are small except at the extreme stations (figs. 6(a) and 6(b)). 
makes sense because the kernels in equations (la) and (lb) rapidly become small as 
Ix - 61 increases. The two-component solution for w (fig. 6(c)) is also altered 
only slightly by truncating the integral (eq. (2b)). This occurs because the sign 
of the integrand upstream of the model is opposite from the sign downstream; thus 
the contributions of the upstream and downstream truncated regions approximately 
cancel each other. On the other hand, the two-component solution for u (fig. 6(d)) 
changes significantly if the infinite integral (eq. (2a)) is truncated. This occurs 
because the kernel in equation (2a) does not decrease as rapidly as the one- 
component kernels for large 
upstream and downstream of the model so the truncated regions add to the total. 

This 

16 - xi and because the integrand has the same sign 

The two-component, infinite-strip boundary data can also be analyzed by the 

Figures 6(e) and 6(f) compare solutions obtained in this way 
two-component, closed-contour method by interpolating velocity data across the ends 
of the test section. 
with the closed contour solutions obtained by including data along these boundaries. 
The differences between the solutions are quite small. 

As all of the solutions discussed so far are expressed in terms of velocity 
perturbations, the exact direction and magnitude of the free-stream vector is 
assiiiiied to be L~oirli. However, because significant model-induced flow pert.urbat.ions 
occur everywhere in the test section, free-stream conditions cannot be measured 
directly. 
solutions were computed for the vortex and doublet in free air with the Mach number 
in the data reduction assumed to be 0.005 less than the true Mach number, as shown 

To illustrate the effects of uncertainty in the free-stream vector, outer 
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in figure 7. 
assumed directions of the free stream differed by 0.1". 

Likewise, figure 8 illustrates outer solutions for which the true and 

The one-component methods indicate interference-free flow even when erroneous 
free-stream conditions are assumed (figs. 7(a), 7(b), 8(a), and 8(b)). Thus they 
are of little use in establishing free-stream conditions. This result is not sur- 
prising because velocity measurements on both contours are equally affected by the 
error. However, the two-component solutions (figs. 7(c), 7(d), 8(c) , and 8(d)) 
differ from the measured data when erroneous free-stream conditions are assumed 
because the normal and streamwise perturbation velocities are not equally affected 
by errors in the free-stream quantities and both are involved in the interference 
assessment. Specifically, u is very sensitive to errors in U whereas w is 
not. Likewise, w is sensitive to errors in the free-stream direction whereas u 
is not. 
ships also establish free-stream conditions without any additional measurements. 

Therefore, boundary data which satisfy the two-component free-air relation- 

Test case (2). A vortex and doublet in a solid-wall tunnel (M, = 0.5, 
~ 

C, = 0.4, A = 0.4)- Consider the same vortex and doublet combination, but in a 
solid-wall wind tunnel instead of free air. Figures 9(a) through 9(f) show the 
solid-wall velocity distributions along with the iterative and one-step outer solu- 
tions computed from the solid-wall data. 
in free air are also shown. 
the free-air data. 

The velocities caused by the singularities 
Note that each one-step solution agrees quite well with 

A comparison of one- and two-component iterative solutions shows that the 

Thus the two-component 
apparent error (the difference between the solid-wall data and the iterative solu- 
tions) is much greater using the two-component method. 
method is more sensitive to wall interference. The sensitivity of the one-component 
method can be increased by increasing the separation between the inner and outer 
contours. Maximum sensitivity, which occurs when the outer contour is at the wall 
and the inner contour is very close to the model, is difficult to achieve in prac- 
tice, especially in a wind tunnel with ventilated walls, for two reasons: ( 1 )  flow 
at the walls tends t o  be complex and three dimensional, and (2) flow near the model 
may be separated or include strong shock waves. 
component method is nearly independent of the location of the single contour. 

The sensitivity of the two- 

The one-component iterative solutions lie between the solid-wall and free-air 
data (figs. 9(ai and 9(b)), which implies that iterative wall adjustments computed 
from the one-component data should be overrelaxed. In contrast, the two-component 
iterative solutions (figs. g(c) through g(f)) would generate larger velocity changes 
than are really required. Thus, the two-component, iterative wall-control algo- 
rithms should be underrelaxed. 

Test case ( 3 ) .  NACA 0012 airfoil in free air (M, = 0.80, u = 2.0')- This test 

case illustrates the importance of accounting for nonlinear effects whenever veloci- 
ties in the outer flow approach the speed of sound. 
simulate flow past an NACA 0012 airfoil in free air at 

The TSFOIL program was used to 
Mm = 0.80 and u = 2.0". 
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At these conditions, the maximum Mach numbers along the inner (y/c = 1.0) and outer 
(y/c = 1.5) contours are 1.015 and 0.919, respectively. 

In figure 10 the free-air data and the linear, iterative outer flow solutions 
Below the airfoil, where the flow in the outer region is subcritical are compared. 

everywhere, the one-component, linear solutions are quite accurate. Although the 
two-component solutions predict the correct trends, they are slightly displaced from 
the free-air data. In the upper outer-flow, linear theory is adequate except for 
the area immediately above the airfoil. 

Figures lO(a) and 10(d) include outer solutions computed using the TSP finite- 
difference algorithm. 
-1.0 < x/c < 2.0 where linear solutions were inaccurate. 
boundary was y/c = 3.5. 
linear solutions in this domain. 
boundaries of the TSP domain because linear theory is used in the TSP algorithm to 
establish boundary conditions. 
linear and nonlinear solutions can be "patched" together to yield an accurate 
overall solution. 

The domain for these calculations was limited to the region 
The upper far-field 

The TSP solutions are substantially more accurate than the 
Both solutions are automatically matched along the 

This is a good example of a situation in which 

Test case (4). NACA 0012 airfoil in free air (M, = 0.90, a = O o ) -  As a final 
example of adaptive-wall methods, consider an NACA 0012 airfoil in free air at 
M, = 0.90 and a = 0'. In this case the supersonic bubble extends well out into 
the outer region: the maximum Mach numbers at y/c = 1.0 and 1.5 are 1.22 and 1.12, 
respectively. The linear solutions are somewhat inaccurate near the airfoil where 
perturbation velocities are greatest (fig. 11). The use of TSP rather than linear 
theory improves the accuracy of the outer solutions; however, significant errors 
persist, especially in the two-component solution. 
due to the relatively coarse mesh used in the TSP outer solutions compared to that 
used in TSFOIL. 
was the entire length of the test section. 

The residual errors are probably 

Unlike the previous example, the domain for these TSP calculations 

Correction Methods 

Test case (1). Vortex and doublet in a solid-wall tunnel (Mm = 0.5, C, = 0.4, 
A = 0.4)- All of the correction methods were applied to the boundary data for the 
vortex and doublet in a solid-wall wind tunnel. 
because the true wall-induced velocities can be determined explicitly from the 
system of image singularities. 

These are good data for a test case 

As a rule, the one-component methods accurately predict the component of wall- 
induced velocity that is parallel to the measured component (figs. 12(a)-12(d)). 
However, solutions for the perpcndicular components tend to be offset from the true 
solutions because of errors in extrapolating velocities downstream of the test 
section. Equations 5(b)  and 5(c) are particularly sensitive to such errors because 
the kernels do not approacn zero for large values of x - 6 .  The effects of 
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extrapolation errors are clearly shown in figs. 12(a) through 12(d) which include 
solutions obtained without extrapolation. 

The agreement between the true solution and the interference velocities com- 
puted by the two-component methods (infinite-strip and closed-contour) is quite good 
(figs. 12(e) and 12(f)). The infinite-strip solution for the wall-induced upwash is 
offset slightly because of truncation of the infinite integral (eq. (6b)) at the 
ends of the test section. 

Test case (2). Vortex and doublet in free air (M, = 0.5, C, = 0.4, A = 0.4)- 
When applied to boundary data acquired in free air, the correction methods should 
predict that wall-induced velocities vanish. This "null test" was applied to the 
vortex and doublet in free air (fig. 13, solid curves). The solution that deviates 
most from zero is the one for upwash computed by the two-component/infinite-strip 
method (fig. l3(e)). Such deviations, largest at the ends of the test section, are 
due to truncation of the infinite integrals in equation (6b). 

Figure 13 also includes interference velocities computed from the same free-air 
data except that in one case (indicated by dotted curves), the assumed free-stream 
Mach number was 0.005 less than the true Mach number and in a second case (indicated 
by the dot-dashed line), the true and assumed free-stream flow angles differed by 
0.1 O .  The two-component/closed-contour solution (fig. 13(f)) gives the clearest 
interpretation of these errors: the Mach number error becomes a uniform, wall- 
induced Mach number perturbation equal to the difference between the assumed and 
true Mach numbers. Likewise, the flow angle error is interpreted as uniform wall- 
induced upwash. The two-component/infinite-strip method (fig. 13( e)) yields a 
similar result except that truncation errors make the interpretation more difficult. 
The one-component methods yield the "correct" interpretation of the component of the 
wall-induced velocity parallel to the measured component but the solutions for the 
perpendicular components are inconsistent. The one-component/two-contour solutions 
(figs. 13(a) and l3(b)) are unreliable since they are deduced from error functions 
(differences between the measured velocities and the outer solutions illustrated in 
figs. 7(a), 7(b), 8(a), and 8(b)) that are far too small to be resolved in a real 
wind tunnel. 

Test case (3). NACA 0012 airfoil in free air (Mm = 0.80, a = 2 O ) -  Consider a 

more realistic configuration: an NACA 0012 airfoil in free air at M, = 0.80 and 
a = 2.0° (fig. 14). As in the previous example, the correct solution for this case 
is zero wall-induced perturbations. The interference velocities computed by the 
two-component/closed-contour method are very small: Mach number perturbations near 
the model do not exceed 0.001, and flow angle perturbations are less than 0.03'. 
The two-component/infinite-strip method also predicts Mach number perturbations 
quite accurately but truncation errors are evident in the solution for wall-induced 
flow angle. The one-component/two-contour solutions for both wall-induced Mach 
number and flow angle are less accurate than the two-component solutions. 
induced upwash computed from streamwise velocity measurements is displaced because 
of truncation errors. The other errors in the one-component/two-contour solutions 

The wall- 
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The one-component/one-contour solutions are grossly in error because of non- 
linear effects and because singularities at the model quarter-chord did not accu- 
rately represent model-induced velocity perturbations along the contour. Greater 
accuracy could probably have been achieved if the model had been represented by 
distributed singularities (ref. 17). 

Test case (4). NACA 0012 airfoil in a porous-wall tunnel (M, = 0.80, a = 2 O ) -  
~ ~~ ~~~ ~ ~~ ~~ 

The final example is for an NACA 0012 airfoil at MaD = 0.80 and a = 2.0' in a 
porous-wall wind tunnel with height-to-chord ratio of 4.0. An exact solution to the 
wall-induced velocity field does not exist since the model is of finite size and the 
flow is transonic. Based on the previous examples, however, we expect the two- 
component/closed-contour solution to be the most reliable. 

Differences between the two-component closed-contour and infinite-strip solu- 
tions near the model are very small (fig. 15). 
exhibit the same trends as the two-component methods, the magnitudes of the wall- 
induced velocities differ significantly. Again, likely reasons for these differ- 
ences are extrapolation errors, nonlinear effects, and the uncertainty of constants 
of integration in equations (5b) and (5c). Since the TSFOIL solution is computed in 
a finite domain, upstream boundary conditions are only approximate and wall-induced 
perturbations do not necessarily vanish at upstream infinity as assumed by the one- 
component correction methods. 

Although the one-component solutions 

, 

CONCLUSIONS 

Because a two-component laser velocimeter will be available to make the 
required boundary measurements, the two-component methods appear to be best both for 
determining wail adjustments and for computing corrections for wall interference in 
the Two- by Two-Foot Wind Tunnel. Based on the parameter studies that have been 
discussed, the two-component methods have the following advantages over the one- 
component method: 

1. They are more sensitive to wall interference. 

2. 
free stream. 
auxiliary measurements. 

They are more sensitive to errors in the direction and magnitude of the 
Thus they can be used to establish free-stream conditions without 

3. Flow measurements are required at fewer locations, thus significantly 
reducing data acquisition time. 

4. Two-component correction methods are independent of arbitrary constants of 
integration and a description of the model. 
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5. 
of both components of velocity thus providing more complete interference 
information. 

Two-component boundary data can be used to predict free-air distributions 

A disadvantage of the two-component, infinite-strip, adaptive-wall method is 
its sensitivity to extrapolation errors. However, these errors can be eliminated 
entirely by measuring boundary data along a closed contour, which could be easily 
accomplished with the laser velocimeter. 

Linear adaptive-wall methods are accurate if the maximum Mach number in the 
outer flow does not exceed 0.9. 
to the TSP equations are significantly more accurate than solutions based on linear 
theory, both for one- and two-component methods. 

At higher Mach numbers, finite-difference solutions 
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TABLE 1.- SUMMARY OF TEST CASES 
~ 

Fig. No. 

6 

7 

8 

9 

10 

1 1  

12 

13 

14 

15 

Flow condition 

Vortex and doublet 
in free air 
M, = 0 . 5 ,  C, = 0.4, A = 0.4 

Vortex and doublet 
in solid-wall tunnel 
h/c = 0.4 
M, = 0.5, C, = 0.4, A = 0.4 

NACA 0012 in free air 
M, = 0.8, a = 2' 

NACA 0012 in free air 
M, = 0.9, a = 0' 

Vortex and doublet 
in solid-wall tunnel 
h/c = 0.4 
M, = 0.5, C, = 0.4, A = 0.4 

in free air 
M, = 0.5, C, = 0.4, A = 0.4 

Vortex and doublet 

NACA 0012 in free air 
M, = 0.8, a = 2O 

NACA 0012 in porous-wall 
tunnel, h/c = 4.0 
M, = 0.8, a = 2' 

Method Eq. No. Ref. No. 

Adaptive-wall 
linear/iterative 
showing truncation 
errors 

linear/iterative 
showing effect of 
Mach-No. error 

linear/iterative 
showing effect of 
flow-angle error 

Adaptive-wall 
one-s tep 

Adaptive-wall 

Adaptive-wall 

Adaptive-wall 

Adaptive-wall 

Correction 

linear and TSP 

linear and TSP 

showing effect 
of truncation 
errors 

Correction 
showing effects of 
Mach-No. and flow- 
angle errors 

Correction 

Correction 

4 

5, 
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AIR SUPPLY 
M A N  I FOLD 
AND FLEXIBLE 

BULKHEAD 

DOWNSTREAM , LASER 
BU LK H E A D  VELOCIME 

SCANNER 

GLASS WINDOW 
WINDOW 

MECHANISM 

Figure 1.- Schematic of the Two- by Two-Foot adaptive-wall test section. 
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Figure 2.- Control contours f o r  adaptive-wall methods. (a) Two-component/infinite- 
strip. (b) One-component/infinite-strip. (c) Two-component/closed contour. 
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Figure 4.- Side view of the test section showing plenum compartments and laser 
velocimeter (LV) measurement locations for the two-component methods. 
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Figure 5.- Side view cf the test section showing plenum compartments and LV 
measurement locations for the one-component/two-contour methods. 
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.060 
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0 ylc = 1 5  
y l c =  -1.5 

o-- OUTER SOLUTION 
WITH EXT RAP0 LAT I ON 

OUTER SOLUTION (TRUNCATED INTEGRAL) - 

"i 
1 
3 

-6 .o -4 .O -2 .o 0 2 .u 4.0 

x l c  

(a) One-component, upwash. 

(b) One-component, streamwise. 

Figure 6.- Linear, iterative adaptive-wall solutions for a vortex and doublet in 
free air (M, = 0.50, C, = 0.4, A = 0.4). 
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0 ylc= 1.5 
0 y/c=-1.5 --- OUTER SOLUTION 

- OUTER SOLUTION (TRUNCATED INTEGRAL) 
WITH EXTRAPOLATION 

I .040 r 

.060 

.020 

0 

-.020 
-6 

xlc  

(c )  Two-component/infinite-strip, upwash. 

(d )  Two-component/infinite-strip, streamwise. 

Figure 6.- Continued. 
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0 y l c =  1.5 
0 y/c=-1.5 --- OUTER SOLUTION FROM MEASURED DATA 

- OUTER SOLUTION FROM INTERPOLATED DATA 
ON UP- AND DOWN-STREAM BOUNDARIES 

ON UP- AND DOWN-STREAM BOUNDARIES 
I .040 r 

.020 

-.020 

-.040 

X I C  

(e) Two-component/closed-contour, upwash. 

(f) Two-component/closed-contour, streamwise. 

Figure 6.- Concluded. 
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(b) One-component, streamwise. 

Figure 7.- Effect of 0.005 Mach number error on adaptive-wall solutions for a 
vortex and doublet in free air (M, = 0.50, C, = 0.4, A = 0.4). 
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( C) Two-component/inf inite-strip, upwash. 

( d )  Two-ComponenWinfinite-strip, streamwise. 

Figure 7.- Continued. 
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(e) Two-component/closed-contour, upwash. 

(f) Two-component/closed-contour, streamwise. 

Figure 7.- Concluded. 
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(a) One-componen t , upwash. 
(b) One-component, streamwise. 

Figure 8.- Effect of 0.1' flow-angle error on adaptive-wall solutions for a vortex 
and doublet in free air (M, = 0.50, C, = 0.4, A = 0.4). 
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(c) Two-component/infinite-strip, upwash. 

(d) Two-component/infinite-strip, streamwise. 

Figure 8.- Continued. 
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(e) Two-component/closed-contour, upwash. 

(f) Two-component/closed-contour, streamwise. 

Figure 8.- Concluded. 
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-.020 0 ylc = 1.5 FREE AIR 
0 y/c = 1.5 SOLID WALL -- ITERATIVE SOLUTION - 1-STEP SOLUTION I (a) -.040 I 1 
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-.lo (b) 

-6.0 -4.0 -2 .o 0 2.0 4 .O 
X I C  

(a) Che-compr?nent upwash. 

(b) One-component, streamwise. 

Figure 9.- One-step adaptive-wall solutions for a vortex and doublet in a solid- 
wall wind tunnel (M, = 0.50, C, = 0.4, A = 0.4). 
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( c )  Two-component/inf in i te-s tr ip , upwash. 

(d) Two-component/infinite-strip, streamwise. 

Figure 9.- Continued. 
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(e) Two-component/closed-contour, upwash. 

(f) Two-component/closed-contour, streamwise. 

Figure 9.- Concluded. 
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(a) One-component , upwash. 

(b) One-component, streamwise. 

Figure 10.- Adaptive-wall solutions for an NACA 0012 airfo 
(M, = 0.80, a = 2 . 0 ° ) .  
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( c )  Two-component/infinite-strip, upwash. 

(d) Two-cornponent/infinite-strip, streamwise. 

Figure 10.- Continued. 
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Figure 10.- Concluded. 
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(a) One-component , upwash. 

(b) Two-component, streamwise. 

Figure 11.- Adaptive-wall solutions for an NACA 0012 airfoil in free air 
(M, = 0.90, a = O . O o ) .  
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- - CORRECTION METHOD WITH EXTRAPOLATION 
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(a) One-component/two-contour/upwash. 

Figure 12.- Wall-induced flow perturbations for a vortex and doublet in a solid- 
wall wind tunnel (M, = 0.50, C, = 0.4, A = 0.4). 
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(b) One-component/two-contour/streamwise. 

Figure 12.- Continued. 
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(c )  One-component/one-contourhpwash. 

F igure  12.- Continued. 

4 4  
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( d )  One-component/one-contour/streamwise. 

Figure 12.- Continued. 
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(e) Two-component. 

Figure 12.- Concluded. 
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(a) One-component/two-contour/upwash. 

Figure 13.- Wall-induced flow perturbations predicted for a vortex and doublet in 
free air, including the effects of Mach and flow angle errors (M, = 0.50, 
CQ = 0.4, A = 0.4). 

47 



.010 

5- 0 

-.010 

.IO 

-.lo 

-AM A& = 0 

--- Aa = 0.1" 
- - - A M  = -0.005 I-- ----- 

-6 .O -4 .O -2 .o 0 2 .o 4 .O 
X I C  

(b) One-component/two-contour/streamwise. 

Figure 13.- Continued. 
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( c )  One-component/one-contour/upwash. 

Figure 13.- Continued. 
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Figure 13.- Continued. 
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Figure 13.- Continued. 
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(f) Two-component/closed-contour. 

Figure  13.- Concluded. 
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(a) Two-component and one-component/two-contour. 

Figure 14.- Wall-induced flow perturbations predicted for an NACA 0012 airfoil in 
free air (M, = 0.80, a = 2 . 0 ° ) .  
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(b) Two-component/closed-contour and one-cornponent/one-contour. 

Figure 14.- Concluded. 
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(a) Two-component and one-cornponent/two-contour. 

Figure 15.- Wall-induced flow perturbations predicted for an NACA 0012 airfoil in a 
porous-wall wind tunnel (M, = 0.80, a = 2.0° ,  h/c = 4.0). 
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(b )  Two-component/closed-contour and one-component/one-contour. 

Figure 15.- Concluded. 
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